1 Functions of a real variable

1.3 Limits

If f(x) is a function defined for all x near x_0 , but not necessarily at $x = x_0$ itself, if the value f(x) of f approximates a number L as x gets closer to a number x_0 , we say that L is the limit of f(x) as x approaches x_0 .

$$f(x) = \frac{2x^2 - 7x + 3}{x - 3}$$

$$\frac{x}{f(x)} \begin{vmatrix} 2.9 & 2.99999 & 2.999999 & \rightarrow 3 \leftarrow \begin{vmatrix} 3.000001 & 3.0001 & 3.1 \\ 4.8 & 4.9998 & 4.999998 & \rightarrow 5 \leftarrow \begin{vmatrix} 5.000002 & 5.0002 & 5.2 \end{vmatrix}$$

$$\lim_{x \to 3} f(x) = \frac{2x^2 - 7x + 3}{x - 3} = \frac{(2x - 1)(x - 3)}{x - 3} \stackrel{=}{\underset{x \neq 3}{=}} 2x - 1.$$

Definition 1.3.1 (Weierstrass, $\epsilon - \delta$ **definition)** Let f be a function defined on an open interval containing x_0 (except possibly at x_0) and let L be a real number, then

$$\lim_{x \to x_0} f(x) = L,$$

if
$$\forall \epsilon \ 0, \ \exists \delta > 0, \ 0 < |x - x_0| < \delta \Rightarrow |f(x) - L| < \varepsilon$$
.

Example 1.3.1 Use the $\varepsilon - \delta$ to prove that $\lim_{x \to 3} (2x - 1) = 5$.

Note. A useful general rule is to write down f(x) = L and then to express it in terms of $x - x_0$ as much as possible, by writing $x = (x - x_0) + x_0$.

Note. In the $\varepsilon - \delta$ def, L and x_0 are finite numbers. We have similar definitions for $x \to \pm \infty$ and also if the limit is not a finite number. We define also one-sided limits: from the right of x_0 : $\lim_{x \to x_0^+} f(x)$, from the left of x_0 : $\lim_{x \to x_0^-} f(x)$.

Indeterminate forms
$$\infty-\infty,\ \frac{\infty}{\infty}\ ,\infty\cdot 0,\ \frac{0}{0},\ \infty^0,\ 1^\infty,\ 0^0.$$

Unless we arrive at an indetermination, we have the following properties.

Properties Assume that $\lim_{x\to x_0} f(x)$ and $\lim_{x\to x_0} g(x)$ exist, where x_0 is a finite number or $\pm\infty$

a)
$$\lim_{x \to x_0} (c_1 f(x) + c_2 g(x)) = c_1 \lim_{x \to x_0} f(x) + c_2 \lim_{x \to x_0} g(x), \quad c_1, c_2 \in \mathbb{R}$$

b)
$$\lim_{x \to x_0} (f(x)g(x)) = \lim_{x \to x_0} f(x) \lim_{x \to x_0} g(x)$$

c)
$$\lim_{x \to x_0} \left(\frac{1}{f(x)} \right) = \frac{1}{\lim_{x \to x_0} f(x)}, \text{ if } \lim_{x \to x_0} f(x) \neq 0$$

- d) Replacement rule: if f and g agree for all x near x_0 (not necessarily including x_0), then $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x)$
- e) Composite function rule: if $\lim_{x\to x_0} f(x) = L$ and $\lim_{x\to L} h(x) = h(L)$, then $\lim_{x\to x_0} h(f(x)) = h(\lim_{x\to x_0} f(x))$

Basic limits. Let x_0 be a finite number

a)
$$\lim_{x \to x_0} c = c$$
, $\lim_{x \to \pm \infty} c = c$

b)
$$\lim_{x \to x_0} x = x_0$$
, $\lim_{x \to \pm \infty} x = \pm \infty$, $\lim_{x \to \pm \infty} \frac{1}{x} = 0$

c)
$$\lim_{x \to x_0} x^n = x_0^n, n \in \mathbb{N}$$

- d) $\lim_{x \to x_0} \sqrt[n]{x} = \sqrt[n]{x_0}$, $(\forall x_0 \text{ in its domain})$
- e) $\lim_{x\to x_0} f(x) = f(x_0) \to \text{trigonometric functions on their domain}$

Example 1.3.2 Prove that $\lim_{x\to 0} \frac{1-\cos x}{x} = 0$.

Lemma 1.3.1 (Squeeze or Sandwich Lemma) Let I be an interval such that $x_0 \in I$. Let f, g and h be functions defined on I, except possibly at x_0 itself. If $\lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = L$ and, $\forall x \in I$, $x \neq x_0$, $h(x) \leq f(x) \leq g(x)$. Then

$$\lim_{x \to x_0} f(x) = L.$$

Example 1.3.3 Use the Sandwich Lemma to prove that $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

1.4 Continuity

A continuous function is a function for which intuitively, small changes in the input result in small changes in the output.

Definition 1.4.1 Let f be a function defined on $(x_0 - p, x_0 + p)$, p > 0

f is continuous at
$$x_0 \iff \lim_{x \to x_0} f(x) = f(x_0)$$
.

Notice that the function must be defined at x_0 to be continuous at that point. If the function is not continuous at x_0 we say that it is **discontinuous** at that point:

• f(x) is discontinuous at x_0 if $\begin{cases} \lim_{x \to x_0} f(x) \text{ does not exist, or the limit exist but is not equal to } f(x_0) \end{cases}$

Definition 1.4.2 A function f(x) is continuous on

- \mathbb{R} , if it is continuous at every point.
- (a,b), if it is continuous at each point of the interval.
- [a,b], if it is continuous on (a,b) and

$$f(a) = \lim_{x \to a^{+}} f(x), \ f(b) = \lim_{x \to b^{-}} f(x).$$

Basic properties

Let f, g be continuous at x_0 , then the following functions are continuous at x_0

- a) $c_1 f + c_2 g$, $c_1, c_2 \in \mathbb{R}$
- b) fq
- c) $\frac{1}{f}$, if $f(x_0) \neq 0$
- d) Composite function: if g is continuous at x_0 and f is continuous at $g(x_0)$, then $f \circ g$ is continuous at x_0

Some continuous functions

The following functions are continuous on their domains

- a) p(x) polynomials
- b) $\frac{p(x)}{q(x)}$ rational functions
- c) $\sqrt[n]{x}$
- d) trigonometric functions: $\sin(x)$, $\cos(x)$, $\tan(x)$, $\arcsin(x)$, ...
- e) hyperbolic functions sinh(x), cosh(x), . . .
- f) $\exp(x)$ and $\ln(x)$

Example 1.4.1

$$f(x) = \begin{cases} \frac{2x^2 - 7x + 3}{x - 3}, & x \neq 1, 3\\ 5 & x = 3\\ -1 & x = 1 \end{cases}$$

Theorem 1.4.1 (Intermediate Value Theorem) If f(x) is a continuous function on [a,b] and K is any number between f(a) and f(b), then there is a $c \in [a,b]$ such that f(c) = K.

Theorem 1.4.2 (Bolzano's Theorem) If f(x) is a continuous function on [a,b] and $f(a) \cdot f(b) < 0$, then there is $a \in (a,b)$ such that f(c) = 0.

Example 1.4.2 Sketch the graph of

$$f(x) = \frac{1}{x}$$

on a)
$$\mathbb{R}$$
 b) $[0,\infty)$ c) $[1,\infty)$ d) $[1,10]$

A function f is **bounded** if the set of its values is bounded. That is, if there exists a number M > 0 such that $|f(x)| \leq M$, for all x in its domain.

Theorem 1.4.3 (Extreme Value Theorem) If f(x) is a continuous function on the closed interval [a,b], then f attains its maximum and minimum value. That is, there exist numbers x_m and x_M in [a,b] such that:

$$f(x_M) \ge f(x) \ge f(x_m)$$
 for all $x \in [a, b]$.